Chapter 3 Semester Final Test Guide

More Quadratics! (3.1 - 3.4)

- Chapter 3 was mainly about "solving" quadratics ... i.e. finding the roots/zeros.
- Remember factors give you the roots, and roots give you the factors!
- We use the Zero Product Property with factors to help us find the roots: if $a \cdot b = 0$ then a = 0 or b = 0
- We learned a bunch of ways to solve quadratics, each with their own strength and weakness:

Quadratic Form	Description
Graphing (3.1c)	Only works if you can easily see the roots on the graph
	Easier if you can use your calculator
	But you <i>CANNOT</i> use your graphing calc on the final!
Square root (3.1c)	• Use if in $f(x) = x^2$ form.
	• Good example of when to use is $(x-2)^2 = 16$
	Take the square root of both sides and simplify
	$ullet$ Remember when you take the square root you have \pm
Factoring	Factor fish, Big X, or just see it in your head
(3.1a, 3.1b, 3.1d)	Break the quadratic into its two factors
	• Example: $x^2 + 5x + 4 = (x + 4)(x + 1)$
	Use the Zero Product Property with the factors to solve (i.e. find the roots)
Completing the Square	Adjust the equation so you have a perfect square trinomial
(3.3a, 3.3b)	• Perfect square trinomial: $x^2 + 4x + 4 = (x + 2)^2$
	Take half the middle term (b) and add it squared
	• Example to complete the square on: $x^2 + 6x + 1 = (x^2 + 6x + 9) + 1 - 9$
	• In the example we complete the square by adding 9 (6/2 squared) and then
	also subtract it to keep everything the same
	• So the final example completed square answer is $(x^2 + 6x + 9) - 8$
	$=(x+3)^2-8$
	VERY helpful because it allows you to convert a quadratic in standard form
	into vertex form.
Quadratic formula	• Can solve ANY quadratic
(3.4a)	$\bullet \chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	• Can have 0, 1 or 2 real number solutions
	Can have complex number solutions

Chapter 3 Semester Final Test Guide

Complex Numbers (mainly 3.2)

- As soon as we introduced the quadratic formula, we encountered quadratics that had the square root of a negative number in its solution. Make sure you review square roots (3.1c):
 - When you take the square root you have the positive and negative (\pm) answer.
 - Always reduce to simplest form: $\sqrt{18} = \sqrt{9 \cdot 2} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$
- Make sure you review complex numbers (3.2a, 3.2b, 3.2c):
 - $i = \sqrt{-1}$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = \sqrt{-1}$, $i^6 = -1$, ...
 - Complex number is in the form $a + \sqrt{b}$.
 - Always reduce to simplest form: $\sqrt{-18} = \sqrt{-1 \cdot 9 \cdot 2} = \sqrt{-1} \sqrt{9} \sqrt{2} = 3i\sqrt{2}$.
 - Review how to add, subtract and multiply complex numbers.

Quadratic Inequalities (3.6):

- Be able to look at a quadratic inequality and identify the graph that goes with it.
- First use your normal graphing skills to determine position and orientation:
 - Leading coefficient tells if it opens up or down.
 - Find the x- and y-intercepts as needed.
 - Find the vertex as needed.
- Second, determine if the line will be solid or shaded:
 - Solid if includes equals $(\leq or \geq)$
 - Dashed if does not include equals (< or >).
- Third, determine where to shade, inside or outside the parabola:
 - Depends on two things:
 - o If the parabola opens up or down
 - o If the inequality is < or >
 - If all else fails, pick an easy point like (0, 0) and test it. Plug it in and if you end up with a true statement, shade on the side of the parabola that (0, 0) lies. If you end up with a false statement, shade on the other side of the parabola from (0, 0).
 - You can also "logic" it out. If the parabola opens in the same "direction" as the inequality symbol, shade inside. Think of it this way, > points up while < points down.
 - o If the parabola opens up and we have >, shade inside (they agree).
 - o If the parabola opens up and we have <, shade outside.
 - o If the parabola opens down and we have >, shade outside.
 - o If the parabola opens down and we have <, shade inside (they agree).